COMPARISON OF PROPENSITY SCORE WITH ZIP MODELS IN ANALYZING ZERO-INFLATED COUNT DATA IN OBSERVATIONAL STUDIES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment: Analyzing propensity score matched count data.

We offer an explanation to the simulation result of Austin (2009) regarding rate ratios, and argue that unmatched analysis of propensity score matched count data results in conservative statistical inferences on the rate ratios.

متن کامل

Modeling zero-inflated count data with glmmTMB

Ecological phenomena are often measured in the form of count data. These data can be analyzed using generalized linear mixed models (GLMMs) when observations are correlated in ways that require random effects. However, count data are often zero-inflated, containing more zeros than would be expected from the standard error distributions used in GLMMs, e.g., parasite counts may be exactly zero fo...

متن کامل

Consistent estimation of zero-inflated count models.

Applications of zero-inflated count data models have proliferated in health economics. However, zero-inflated Poisson or zero-inflated negative binomial maximum likelihood estimators are not robust to misspecification. This article proposes Poisson quasi-likelihood estimators as an alternative. These estimators are consistent in the presence of excess zeros without having to specify the full di...

متن کامل

Fitting Zero-Inflated Count Data Models by Using PROC GENMOD

Count data sometimes exhibit a greater proportion of zero counts than is consistent with the data having been generated by a simple Poisson or negative binomial process. For example, a preponderance of zero counts have been observed in data that record the number of automobile accidents per driver, the number of criminal acts per person, the number of derogatory credit reports per person, the n...

متن کامل

Propensity Score Matching for Multiple Treatments Comparison in Observational Studies

A major limitation of making inference about treatment effect based on observational data from a non-randomized study designs is the treatment selection bias, in which the baseline characteristics of population under one treatment could dramatically differ from the other one. If not handle properly, such sources of heterogeneity will introduce confounding effect into causaleffect relationship a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Value in Health

سال: 2016

ISSN: 1098-3015

DOI: 10.1016/j.jval.2016.03.1817